NASA Western Water Applications in Colorado River Basin: Engaging with Stakeholders to Create Solutions

Catalina M. Oaida
Stakeholder Engagement Lead
NASA Western Water Applications Office
Jet Propulsion Laboratory, California Institute of Technology

8 October 2020
SWEPSYM
Outline

• NASA Applied Sciences Water Resources Program and Western Water Applications Office (WWAO) Overview
• Identifying water needs
• Making connections, building projects
• Transitioning from research to operations
• NASA WWAO Water Portal
• Support the use of Earth observations in water resources management related to **water demand, supply, and quality**
• Innovative solutions to water resources issues in partnership with stakeholders

In The Next Decade NASA Is Leading An Outpouring Of Freshwater Information From Space

https://appliedsciences.nasa.gov/programs/water-resources-program

In the field of water resources, Earth observations can help us:

- Improve efficiency and accuracy of freshwater availability
- Better predict freshwater availability, especially under- and over-supply events
- Optimize basin-level water management for long-term sustainability (e.g. reservoir storage and infrastructure planning information)
- Better understand water use to efficiently manage water allocations, including improving irrigation management strategies
- Protect human health and environment by providing water quality indicators
NASA Applied Sciences Water Resources

HOW?
- Exploring technology and capabilities
- Connecting the science to the decision makers
- Increasing access to information

THE PILLARS OF THE NASA APPLIED SCIENCES WATER RESOURCES PROGRAM

Portfolio of Applied Research Projects
- Support individual applied research that may include capacity building and transfer of technology or information to decision-making entities

Western Water Application Office
- Stakeholder engagement
- Basin assessments
- Private company engagement
- Transfer of technology

Program Activities
- Contribute to Interagency and International Working Groups
- Engage with private and public entities to amplify benefits of EO
Our mission is to improve how water is managed in the arid western U.S. by getting NASA research, data and technology into the hands of water managers and decision makers. WWAO develops strategic partnerships with water managers, identifies pressing water issues and delivers solutions to those issues based on NASA capabilities.

WWAO Model

Building Partnerships to Help Answer Questions Like…
- When will my snowpack melt and how much inflow will I get?
- Over the past X years, how many times did an algal bloom form near my intake? How has the frequency, duration changed?
- How can I optimize irrigation and fertilizer application?

WWAO pursues **needs** driven approach to develop and fund projects using remote sensing data, research, and technology.
WWAO’s mission is to improve how water is managed by getting NASA data, technology and tools to water managers and decision makers.

- **Identify Needs** in western water management for information and decision support that NASA can address.

- **Make Connections** between stakeholders and NASA scientists, technology, tools, and data.

- **Build** or support **projects** that address the need, harnessing NASA capabilities.

- **Transition** water applications into operations to achieve a sustainable and long-term impact.

Work with partners for sustainable impact.
1. Identify Needs
WWAO has conducted Needs Assessment Workshops for **Colorado** and **Columbia River Basin**, and the Private Sector

- Identified dozens of needs spanning agriculture, water supply, water quality and watershed health

- Plans to conduct similar assessments of **Rio Grande**, **Missouri** and **Arkansas-Red Basins** to identify highest priority needs

- Needs are now made available to community on **WWAO Water Portal**
Conduct River Basin Water Management Survey

Management and Data Challenges

Preliminary Gaps Identified

Conduct Needs Assessment Workshop

Initial Gaps Identified

Initial Needs Defined

Complete Needs

Iterate with water partners to complete

Needs Assessment Complete

Prioritize Needs

Iterate with water partners

Needs Prioritized
2019 Columbia River Basin Needs Assessment

<table>
<thead>
<tr>
<th>Agriculture</th>
<th>Water Quality</th>
<th>Water Supply</th>
<th>Watershed Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Mapping</td>
<td>Cyanobacteria</td>
<td>Evapotranspiration</td>
<td>Habitat Management</td>
</tr>
<tr>
<td>Evapotranspiration/Consumptive Use</td>
<td>Stream Temperature</td>
<td>Groundwater Recharge & Storage</td>
<td>Land Use & Land Cover</td>
</tr>
<tr>
<td>Irrigation Management & Scheduling</td>
<td>Turbidity</td>
<td>Snow Water Equivalent</td>
<td>Surface and Groundwater Interaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streamflow Monitoring</td>
<td>Stream Temperature Dynamics</td>
</tr>
</tbody>
</table>

2018 Colorado River Basin Needs Assessment

Priority Needs

<table>
<thead>
<tr>
<th>Water Resources Category</th>
<th>Use Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snow Properties and Processes</td>
<td>Improved Forecasts of Snowpack, Runoff, Water Demand, Evapotranspiration</td>
</tr>
<tr>
<td>Water Supply Forecasting (< 1 year period)</td>
<td>Streamflow Predictions at Sub-Basin Scales</td>
</tr>
<tr>
<td>Evapotranspiration (ET) over Land and Water</td>
<td>Consumptive Use for Calculating Water Budgets</td>
</tr>
<tr>
<td></td>
<td>Reservoir Evaporation</td>
</tr>
<tr>
<td>Crops and Agriculture Properties and Processes</td>
<td>Crop Mapping</td>
</tr>
<tr>
<td></td>
<td>Crop Monitoring</td>
</tr>
<tr>
<td>Irrigation Types and Methods</td>
<td>Irrigation Management</td>
</tr>
<tr>
<td></td>
<td>Irrigation Mapping</td>
</tr>
<tr>
<td>Groundwater Characterization</td>
<td>Augmenting Groundwater Quantification</td>
</tr>
<tr>
<td>Extreme Event Prediction and Impact Assessment</td>
<td>Mitigation of Wildfire Impacts on Watershed Supply</td>
</tr>
<tr>
<td></td>
<td>Augmentation of State-Level Drought Planning and Response</td>
</tr>
<tr>
<td></td>
<td>Drought Planning and Response at the State Level</td>
</tr>
<tr>
<td>Water Supply Forecasting (≥ 24-month period)</td>
<td>Predicting Changes in the Sierra Nevada or Rocky Mountain Snowline, Snowpack Distribution, and Streamflow Forecasts</td>
</tr>
</tbody>
</table>
2. Making Connections & Building Projects
High-Resolution Drought Assessment for the Colorado Climate Center

Motivation

- **Drought monitoring with Colorado Climate Center**
 - Colorado Climate Center provides weekly updates to the United States Drought Monitor (USDM) for Colorado, New Mexico, Utah, Arizona, and Wyoming
 - Requires higher-resolution soil moisture, evaporative demand, evapotranspiration, snowpack, and irrigation estimates.

- **Groundwater recharge estimation with California State Water Resources Control Board**
 - Providing natural recharge estimates to support planning under Sustainable Groundwater Management Act (SGMA).

Project Lead: Matt Rodell (NASA Goddard)

Partners:
Colorado Climate Center, California State Water Resources Control Board, and other state and local agencies.

Capability:
High resolution drought assessment (soil moisture, evaporative demand, ET, snowpack, irrigation estimates)

Applications:
Drought assessment

Simulated 0-10 cm soil moisture on 2 June 2017.
Estimating Consumptive Use from Evapotranspiration in the Upper Colorado River Basin for the United States Bureau of Reclamation

Motivation

- The United States Bureau of Reclamation (USBR) is mandated to perform the accounting of consumptive use and loss for the Colorado River Basin.
- Currently, each state in the basin relies on what is reported by water-rights users. To verify these reports, unbiased estimates of consumptive use are needed.
- Water-rights planning, including emergency drought requirements and Indian Water Rights Settlements, in the Colorado River Basin is done at the state and federal levels.
- USBR would like to adopt a consistent methodology to be used at the USBR and potentially within four states in the Upper Colorado River Basin (UCRB).

Project Lead: Chris Hain (NASA Marshall)

Partner: Bureau of Reclamation

Capability: ensemble 30-m ET estimates between all available remote sensing methods.

Applications: estimate consumptive use in UCRB for reporting and long-term planning purposes.
Using Airborne Snow Observatory Snow Water Equivalent Products to Improve Runoff Forecasting

Motivation

- Streamflow across the Western U.S. is predominantly snowmelt driven. Model SWE representation is a major source of uncertainty in current forecast models.
- Airborne Snow Observatory (ASO) data provides instantaneous SWE mapping in mountain terrain and are designed specifically for improving runoff estimates.
- NWS River Forecast Centers provide streamflow forecasts using combination of modeling and observations. However, there are logistical challenges to inserting new ASO data into operational procedures.

Project Lead: Kat Bormann (ASO, Inc., formerly of JPL)

Project Partners: Colorado River Basin Forecast Center (CBRFC), Southern Nevada Water Authority

Capability: Watershed-scale estimates of SWE at 50 m resolution derived from the product of snow depth observations at 3 m resolution and modeled snow density

Application: Derive tangible pathways for the quantitative use of ASO SWE products towards improved runoff forecasting using existing operational tools at the CBRFC
3. Transition Projects into Operations
Eyes On The Earth

2 billion people rely on snowmelt for water. As the planet warms, water managers need to adapt to changing snow. NASA’s Airborne Snow Observatory (ASO) – “the most significant development in the history of snow surveys” – is a powerful eye in the sky.

• With WWAO’s help, ASO showed it can forecast snow water equivalent in mountain snowpack up to 98% accurately.

• As part of its Research to Operations program, WWAO determined a commercial spin-off for ASO was viable.

• In 2019, ASO Inc. was founded to transfer the NASA technology to commercial global operations. Its vision is to support sustainable water supplies by reaching every mountain system in the world.
Navajo Drought Relief

- WWAO’s Drought Severity Evaluation Tool (DSET) delivers maps and trends of drought severity and precipitation in near-real-time.
- DSET was built by WWAO, the Navajo Nation Dept. of Water Resources, Climate Engine, and Desert Research Institute.
- Amber McCullum (NASA ARC/BAERI) and Carl McClellan (Navajo Nation Department of Water Resources) secured funding from the S.D. Bechtel, Jr. Foundation for continued development of the Drought Severity Evaluation Tool (DSET), as well as expansion of the partnership to use remotely sensed Evapotranspiration (ET) data from OpenET.

- This project will sustain the relationship with NASA and the Navajo Nation through the co-development of satellite-based water management tools, capacity building, an internship opportunity for a student within the Diné community, and continued transition to operations from NASA to the Navajo Nation.

Over 80% of homes on the Navajo Nation lack running water. Drought is common and pervasive. WWAO’s new tool, with the help of data from space, is enabling Navajo managers to better respond to drought.
Transition to Operations

- Developing “Business Cases” for NASA applications in water management
- Building a “Research to Operations” (R2O) community to facilitate transition of applications from NASA research to sustained operational use

WWAO will coordinate directly with partner programs in other federal agencies to understand specific near-term opportunities to improve the R2O process.

The workshop in 2021 will be focused on understanding how Congress and Federal Agencies develop priorities and secure resources for future innovation, and how NASA can build awareness of promising applications earlier in this process.
WWAO’s Water Portal - a Communication and Information Hub

Goals for the Portal:

- **Create connections** between water **needs** and NASA **capabilities** to help solve water challenges.
- Provide a **valuable information portal** for (NASA) scientists, water managers, decision makers, agency program managers.
- Identify **common water priorities** across regions.
- Offer a place where users can **share** their **needs / capabilities**.

https://wwao.jpl.nasa.gov/portal/
Thank you!

Questions?

Catalina M. Oaida, Stakeholder Engagement Lead
Catalina.Oaida@jpl.nasa.gov

Forrest Melton, WWAO Program Scientist
Forrest.S.Melton@nasa.gov

Stephanie Granger, WWAO Program Strategist
Stephanie.L.Granger@jpl.nasa.gov

Indrani Graczyk, WWAO Program Manager
Indrani.Graczyk@jpl.nasa.gov

NASA Western Water Applications Office
Tools for managing a precious resource

https://wwao.jpl.nasa.gov/